

<u>Motor with Advanced Concepts for </u><u>High power density and <u>IN</u>tegrated cooling for <u>Efficiency (MACHINE)</u></u>

DE-EE0008867

DOE/VTO Annual Merit Review Presentation

Jagadeesh Tangudu (Principal Investigator)

Raytheon Technologies Research Center

June 21-25, 2022

Project ID: ELT253

<u>RTRC Team:</u> Bob Dold, Stephen Du, Kenji Homma, Kim Saviers, Sunilkumar Soni, Jagadeesh Tangudu (PI), Joe Turney John Deere Team: Robert Salamon, Brij Singh (Co-PI)

Project Overview

Timeline

Project Start Date: Oct 2019 (Jan 2020)

Project End Date: Jun 2022

Percent Complete: 85%

Delays associated with supply chain, shipping

and other delays

Budget

Total Project Budget

DOE Share: \$750k Cost Share: \$187.5k

Funding for 2020: \$599.6k Funding for 2021: \$337.9k

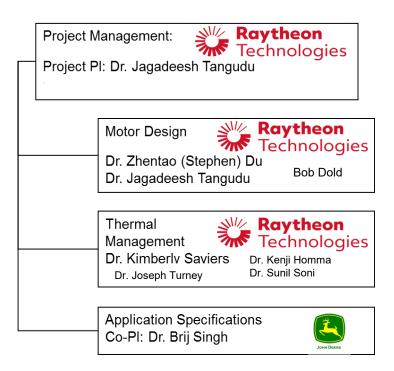
Funding for 2022: No Cost Extension

Program Barriers

Project goals include the following

- High power density (>8X)
- Lower motor cost (< \$6/kW)
- Improve life (>2X)

These project goals are extremely challenging...


- Increased power density require reduction in volume
- One option to achieve is by increasing the speed (>20 kRPM)
- High speed operation would present mechanical challenges along with limited pole count
- High frequency also brings in higher loss density and challenging thermal management

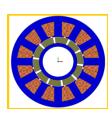
Partners

- Raytheon Technologies Research Center (formerly known as United Technologies Research Center)
- John Deere

Multi-Disciplinary Team

- Seedling project
- Evaluate proposed technology during BP-1 and down-select technologies suitable for meeting target metrics
- Path for risk reduction using sub-component demonstrations during BP-2
- Multi-disciplinary team to explore the optimal solutions

Challenges


- Increase in 8X volumetric power density is a challenging target to meet
- Achieving this would require increase in speed, but this posed two critical challenges
 - Trade between concentrated (limited slot-pole combination) vs. distributed winding (larger end winding)
 - Use of non-heavy rare earth magnets reduces the energy product and operating temperatures
 - Increase in fundamental frequency, i.e., increase in core losses as well as increase in AC winding losses in copper
 - Mechanical challenges such as rotor dynamics, centrifugal loads, larger air gap's (lower power density), bearing life, mechanical losses etc.
 - Thermal management of the motor is also critical for improved life and efficiency
- Use of reduced loss steel (for mitigating high frequencies) and Litz's wire (for AC winding losses) would increase material and manufacturing cost
- Impact of technologies required to meet the power density metrics while minimizing the cost and life is critical

Project Objectives (Year 2020 / 22)

- Explore machine trade space
- Identify optimal operating speed (>20 kRPM)
- Use of non-heavy rare earth magnets
- Identify suitable lamination steel for reduced losses
- Evaluate achievable slot fill factor with segmented stator sections
- Optimal use of Electromagnetic and thermal management solutions to meet these stringent targets

Motor

Motor Target Metrics									
Specifications	Units	Values							
Power Density (greater than)	kW/L	50							
Cost (less than)	\$/kW	6							
Life (greater than)	Х	2							
Derived Metrics									
Peak Power	kW	125							
Min Speed (greater than)	RPM	20000							
DC Bus Voltage	V	1050							
Volume (Less than)	1	2.5							
Unit Material Cost (Less than)	\$	750							
Based Speed	RPM	20000							
Peak Torque @ Base Speed	Nm	59.68							

John Deere Drive [1]								
Specifications	Units	Values						
Power	kW	200						
Power Density	kW/L	40						
Drive DC Bus Voltage	V	1050						
RMS fundamental line-line	V I-I							
voltage	RMS	690						
Max Fundamental Frequency	kHz	2						
Drive Switching Frequency	kHz	20						
Number of Phases (>)	[-]	3						

Project Relevance

ETDS Targets										
Year	2020	2025	Change							
Cost (\$/kW)	8	6	25% cost reduction							
Power Density (kW/L)	4.0	33	88% volume reduction							

- Historically, VTO emphasized HEV applications, with target power levels at 55 kW [1]
- Vehicle mass has been increasing since then (>100kW) to meet consumer vehicle performance [1]
- Entire Electric Traction Drive Systems (ETDS) target metrics for 2025 <\$6/kW & > 33kW/L^[1]

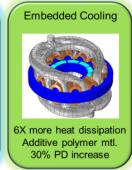
Electric Motor Targets										
Year	2020	2025	Change							
Cost (\$/kW)	4.7	3.3	30% cost reduction							
Power Density (kW/L) ¹	5.7	50	89% volume reduction							

- Breaking down the target metrics to motor and drive would results in motor power density metrics > 50 kW/L with 89% reduction in volume [1]
- 100+ kW electric machine with its rotor, rotor shaft, stator with ending externs, housing and cooling but not reduction gearing [1]

Uniqueness and Impact

In-order to meet the target metrics proposed MACHINE concept uses a Motor Drive architecture

- a) Wide Band Gap (WBG) drive
- b) Segmented stator fractional slot concentrated windings (FSCW)
- c) Surface mounted permanent magnets
- d) Operating at speed (>20,000 rpm)
- e) Materials
 - non-heavy rare earth
 - low loss electric steel for reduced core losses
- f) In-slot ultra-low-volume embedded cooling channels


These technologies in combination would potentially lead to

- volumetric power density of >50 kW/L
- cost of \$6/kW, and
- 3. 2X improvement in motor life

52 kW/L (8X increase), Cost of \$6/kW, 2X higher durability

Project Approach

Proposed Approach for this project includes the following

- Electromagnetic design space evaluation: Identify an appropriate motor topology with in the suitable maximum fundamental frequency, winding architecture, materials, and key dimensions while applying assumptions, such as,
 - Segmented stator for higher slot fill factor
 - Slot-pole selection for maximum fundamental frequency to 2000 kHz
 - Low core losses by using high Silicon steel at high frequencies
 - Move loss density from core to copper losses
- Thermal management: Co-design methodology implemented to assess down-select EM configurations to evaluate the power density & cost
- Sectional stator prototype during BP-2 to reduce key in-slot cooling risks

Project Timeline & Milestones

Project Timeline (Original)

Task#	Task Description	2	019-0	24	2	020-0	21	2	020-0	22	2	020-0)3	2	020-0)4	20)21-0	21	20)21-0	22	2	021-0	23	20)21-C	Į 4
Task-1	Specification Definition																											
Task-2	Conceptual Design																											
Task-3	Preliminary Design																											
Task-4	Detailed Design & Drawings																											
Task-5	Prototyope Building																											
Task-6	Assembly & Testing														,	Go/N	10-G	0										
Task-7	Documentation & Reporting																											
Task-8	Program Management																											

- Delays in contract negotiations along with personal end of year vacations delayed the start of the project
- BP-1 Milestone: Preliminary design (125 kW) with its performance variables compared with target metrics – Due end of Sept 2020 - Completed Apr 2021
- BP-1 Milestone: Detailed sectional stator with in-slot cooling Due end of Dec 2020 Go/No-Go Review – Received no cost extension for phase-1 till Jun 2021 - Completed Apr 2021 – Received approval for phase-2 and contract extended.
- BP-2 Milestone: Build, test and validate sectional stator to validate in-slot cooling as function of current density – Due Dec 2021 – Extended to June 2022, significant delays associated with supply chain, shipping delays, prototype build.

Project Milestones & Status

Milestone #	Milestone	Туре	Description
1.1	Target performance metrics	Technical	UTRC in collaboration with John Deere shall develop a comprehensive target performance metric to be achieved during the duration of the proposed project by month-1
2.1	Identify optimal operating speed and thermal management approach	Technical	UTRC team shall develop conceptual design of the motor and identify optimal operating speed (> 20,000 RPM) and suitable cooling mechanism by month-4
3.1	Preliminary design meeting target performance specifications	Technical	Preliminary density of the in-slot cooled 125kW motor with its performance comparison against target power density of 50 kW/l and cost target of \$6/kW by month-12
4.1	Detailed design drawings for sectional stator	Technical& Go/No Go	Detailed design and drawings for a sectional prototype with in-slot cooling to validate slot fill factor and in-slot cooling performance by month-15. This is also a Go/No-Go decision point for the proposed project
6.1	Experimental validation	Technical	Experimental results and validation of model prediction of optimal current density for a given maximum hot spot temperature by month 23
8.1	Reporting	Technical	Quarterly and final reporting as per DOE requirements.

100% complete

100% complete

100% complete

Specifications	SOA	Target Metrics	Current Design
Power Density (kW/L)	5.7	≥ 50	50.3
Cost (\$/kW)	4.7	≤ 6	~6.3
Life (-)	1X	≥ 2X	1.95X
Peak Power (kW)	55	125	125
Max Speed (RPM)	2,800	≥ 20,000	20,000
DC Bus Voltage (V)	325	700	700
Volume (L)	25-35	≤ 2.5	2.4

100% complete

Phase-2 contract approved & signed.

Prototype build: 80%

No cost extension requested...

Accomplishments Till Date

- Completed preliminary (multi-physics modeling &) design of proposed MACHINE concept
- Electric Machine Design
 - Completed preliminary design incorporating multi-physics constraints and design requirements
 - Completed loss modeling to provide inputs to thermal modeling
- Thermal Management
 - Completed preliminary design of in-slot cooling through channels incorporating ground insulation and effective stranded copper/insulation structure
 - Design refinement capturing final iteration
- Structural Design
 - Complete verification of electromagnetic forces on the stator and its impact on the structure
 - Complete rotor permanent magnet retainment design and safety factors

Summary / Current Work

- Complete multi-physics based preliminary design of proposed MACHINE concept
- Proposed design meets target power density (50.3 kW/l), life by 1.95X and cost \$6.3/kW
- Proposed design meets power density and life requirements and narrowly missed cost targets due to limited information from supply chain on high volume production cost
- Complete design drawings for sectional stator (planning to build during phase-2)
- Current working with a local vendor to validate the designed fill factor and in-slot cooling structure

Current Work

- Build a section stator mimicking the preliminary design 80% completed
- Validate the thermal management performance for a given heat loads
- Document findings and report to DOE/VTO through quarterly reports

*Any proposed future work is subject to change based on funding levels

